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Following Fl .uugge’s exact derivation for the buckling of cylindrical shells, the equations
of motion for transient dynamic loading of orthotropic circular cylindrical shells under
external hydrostatic pressure have been formulated. The normal mode theory is used to
provide transient dynamic response for the equations of motion. The effect of shell’s
parameters, external hydrostatic pressure and material properties on the shell response has
been studied in detail. A part of tables and figures are given in this paper.

# 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

Dynamic problems of circular cylindrical shells have great importance in many
engineering applications, such as in the design of machines and structures. Many
researchers have studied the problems. Leissa [1] has provided a comprehensive survey of
free vibrations of thin and thick, isotropic and orthotropic, cylindrical shells. Dong [2]
researched the free vibration of laminated shells. Warburton and Soni [3] studied the
resonant response of orthotropic shells. Cederbaum and Heller [4] and Christoforou and
Swanson [5] studied the response of orthotropic circular cylindrical shell subjected to
impulses. Using Fl .uugge’s theory, Frederick analyzed the impact loading of a submarine
isotropic shell under external hydrostatic pressure. The equations of motions in reference
[6] are applicable for long or thick cylindrical circular shells.

In this paper, following Fl .uugge’s exact derivation for the buckling of cylindrical shells,
the equations of motion for transient dynamic loading of orthotropic circular cylindrical
shells subjected to external hydrostatic pressure have been formulated. The normal mode
theory is used to provide transient dynamic response for the equations of motion. The
response of displacement, strain and stress are obtained for a distributed impulse.

2. THEORETICAL ANALYSIS

Figure 1 shows an orthotropic circular cylindrical shell subjected to dynamic impulse
and external hydrostatic pressure. The external hydrostatic pressure acts on the whole
surface and the two ends of the shell.

With the length of shell denoted by L; the radius of the middle surface by R; the shell
thickness by h; cylindrical co-ordinates (x; y; z) are taken as shown in the figure. The
external hydrostatic pressure is not shown in the figure for clearance.
0022-460X/02/$35.00 # 2002 Published by Elsevier Science Ltd.
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Figure 1. An orthotropic circular cylindrical shell subjected to external impact.

X. LI AND Y. CHEN968
Suppose that the meridional and circumferential directions are principal axes of the
orthotropic material. There exists the relation

nxEy ¼ nyEx: ð1Þ

Ex; Ey are Young’s moduli and nx; ny are the Poisson ratios in the axial and circumferential
directions. The distributed impulse is also shown in this figure. The center of impulse is in
(x0; Z0).

2.1. FUNDAMENTAL EQUATIONS

The Fl .uugge equations of shell subjected to hydrostatic pressure are written as
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where r is the mass density of material, t the time, Q the external hydrostatic pressure, u; v;
w are deflection displacements in axial, circumferential and radial directions respectively.
fx; fy and fr are dynamic loading in x; y; z directions respectively.

The component of the membrane force and the moment are given by [7]
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The qualities Dx; Dy; and Dxy are extensional rigidities; Kx; Ky; and Kxy are flexural
rigidities. They are defined as the following:

Dx ¼ Exh=ð1� nxnyÞ; Dy ¼ Eyh=ð1� nxnyÞ; Dxy ¼ Gh;

Kx ¼ Exh3=12ð1� nxnyÞ; Ky ¼ Eyh
3=ð1� nxnyÞ; Kxy ¼ Gh3=12;

ð4Þ

where G is the shear modulus.
Using equations (3) and (4), one can write equation (2) as
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[Lij ] is linear differential operator.

2.2. DISPLACEMENT RESPONSE

Here, a simply supported shell without axial constraint at the edges is discussed. For the
shell, the boundary conditions are written as

v ¼ w ¼ Nx ¼ Mx ¼ 0; x ¼ 0;L: ð6Þ

Therefore, according to normal mode method, the displacements can be taken as
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where Umn; Vmn; and Wmn are amplitude factors, n is the number of circumferential wave,
l ¼ mp=L; m the number of axial half-waves, qmnðtÞ the generalized co-ordinate.

Substituting equation (7) into equation (5), and utilizing the orthogonality condition,
yields the following:
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where oij is the radian frequency of vibration shape m ¼ i; n ¼ j and A the integration
area.

In the view of structure dynamics, the impulse is usually defined as force	 time.
Usually, impulse cannot be expressed by an exact mathematical equation. One can choose
some impulse type, such as step impulse or triangle impulse to study the dynamic
characteristics of orthotropic cylindrical shells. Therefore, we consider an impulse per unit
area, ix(x; y), iy(x; y) and ir(x; y) acting on the cylinder for an infinitely short time. This
kind of impulse is a simple input for theoretical analysis. The cylinder may be considered
to be vibrating freely with the following initial conditions:
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Therefore, the solution of equation (8) can be written as
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Suppose fx ¼ fy ¼ 0; the acting area is 2e1 	 2e2 (as shown in Figure 1). Equation (10)
can be simplified as
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For n ¼ 0;
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Therefore, the displacement response of the shell can be written as

uðx; y; tÞ ¼
X1
m¼1

X3

i¼1

am0iqm0iðtÞcos lx þ
X1
m¼1

X1
n¼1

X3

i¼1

amniqmniðtÞcos lx cos ny;

vðx; y; tÞ ¼
X1
m¼1

X1
n¼1

X3

i¼1

bmniqmniðtÞsin lx sin ny;

wðx; y; tÞ ¼
X1
m¼1

X3

i¼1

qm0iðtÞsin lx þ
X1
m¼1

X1
n¼1

X3

i¼1

qmniðtÞsin lx cos ny: ð14Þ

In equation (14), a and b are mode shape coefficients, a ¼ Umn=Wmn; b ¼ Vmn=Wmn: The
free vibration frequency and mode shape ratio can be obtained by setting the dynamic item
fx; fy and fr in equation (2) to zero.
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2.3. STRAIN AND STRESS RESPONSE

The strain and stress response of a point in the middle surface can be obtained by the
following relations:
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3. EXAMPLES AND DISCUSSION

In order to study the orthotropy, we choose five cases of shell properties [2]. They are
listed in Table 1. Part of computation results is given. In the following computation, the
acting area parameter e1 ¼ e2 ¼ R=25: The following non-dimensional parameters are
used:
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where the non-dimensionalization is made by considering the maximum values calculated
from the beam theory, regarding a cylindrical shell as a beam.

3.1. SOLUTION METHOD

Because the external hydrostatic pressure exists, one should calculate the convergence
load Qcr: Qcr can be acquired by classic method by letting dynamic items vanish in
equation (2). After the convergence load has been computed, in order to study the effects
of hydrostatic loading on the dynamics of the shell, we suppose some hydrostatic pressure
level, that is Q=Qcr=0, 0�25, 0�50, 0�75, 0�98, to calculate dynamic responses of the shell.
For each couple of (m; n), there are three frequencies and corresponding three mode shape
coefficients. All these three frequencies and coefficients are used to calculate the response
of shell.
Table 1

Properties of materials

Case no. nx ny Ex (	 1010) (N/m2) Ey (	 1010) (N/m2) G (	 1010) (N/m2) Ey=Ex

1 0�131926 0�012114 22�7350 2�0876 0�7958 0�0918
2 0�131926 0�04 6�8599 2�0799 0�7958 0�3032
3 0�131926 0�131926 2�0545 2�0545 0�7958 1�000
4 0�04 0�131926 2�0799 6�8599 0�7958 3�298
5 0�012114 0�131926 2�0876 22�735 0�7958 10�89
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3.2. ACCURACY EXAMINATION

In order to calculate the response of the shell, the free vibration frequencies and
mode shape should be acquired first. For a non-trivial solution, the determinant
of their coefficients must vanish. Therefore, a frequency equation can be obtained and a
standard method is used to solve that polynomial equation. An example is given in
Table 2.

The response of an isotropic shell subjected to a unit impulse is acquired here and
comparison is given in Table 3. PSI system is used for comparison in Table 3. Convergence
of the method is also examined in this example. As can be seen in the table, the
convergence is good for response analysis. In the example in Table 3, m ¼ 1;50; n ¼ 0;49
are used.

3.3. DISPLACEMENT RESPONSE

The response of radial displacement (x ¼ L=2) is shown in Figure 2. As is shown, the
existence of hydrostatic pressure can enlarge the displacement response. Three Q=Qcr

ratios are shown in the figure. The shape in which Q=0 is similar to that when hydrostatic
pressure is equal to zero.

The effect of L=R ratio on the response is shown in Figure 3. It is shown that the
radial displacement oscillates about the static value with the period of oscillation
corresponding to the mode wave that gives the lowest frequency of the shell. In the
case of small value of L=R ratio, as known from the results of the free vibration,
the higher modes of wave except (m; n)=(1,1) appear one by one and the amplitude
corresponding to them becomes predominant. Therefore, the wave pattern consisting
of a combination of each mode exhibits a complicated feature for impact. This is the
reason why we cannot anticipate where the maximum amplitude occurs. The response
becomes smaller for lower L=R ratio when the impact vanishes. As for a longer shell, the
response becomes larger, until a maximum point emerges, then it decreases while time
increases.
Table 2

Comparison of frequency parameter O of unloaded (Q ¼ 0)orthotropic circular cylindrical

shells, for which L=R ¼ 2�0; h=R ¼ 0�01; m ¼ 1

Case no. n

2 3 4 5 6 7

Warburton and Soni [3] 1 0�119875 0�085272 0�065184 0�054311 0�050975 0�054227
2 0�207798 0�139463 0�100747 0�081915 0�079310 0�089331
3 0�330057 0�198610 0�134684 0�113414 0�122501 0�150636
4 0�335754 0�201822 0�148874 0�153026 0�194244 0�256190
5 0�338104 0�210697 0�188208 0�240929 0�334672 0�453548

Present 1 0�119888 0�085277 0�065190 0�054336 0�051014 0�054286
2 0�207822 0�139494 0�100772 0�081952 0�079335 0�089433
3 0�330100 0�198607 0�134742 0�113515 0�122652 0�150753
4 0�335802 0�201833 0�148975 0�153209 0�194549 0�256795
5 0�338120 0�210729 0�188495 0�241727 0�336395 0�456826
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Figure 2. W2T curves for L=R ¼ 4; h=R ¼ 0�01; Ey=Ex ¼ 0�0918:

Table 3

Example

Q=Qcr u 	 1012 v 	 102 ex 	 105 ey 	 104 sx sy

[7] m ¼ 1; 30 n ¼ 0; 29 0�00 �2�7277 2�9461 3�3372 �2�7508 �1968�3 �8908�5
0�25 0�4485 3�5206 2�0180 �2�8794 �2558�3 �9449�1
0�50 4�3863 4�2052 0�2079 �2�9856 �3288�7 �10 053�0
0�75 9�5507 5�0308 �2�140 �3�0685 �4174�5 �10 597�0

Present m ¼ 1; 30 n ¼ 0; 29 0�00 �3�1303 2�9462 3�3345 �2�7512 �1969�7 �8910�2
0�25 0�6743 3�5222 1�9580 �2�8802 �2579�4 �9500�4
0�50 5�3951 4�2091 0�1483 �2�9867 �3309�9 �10 063�4
0�75 11�1987 5�0377 �2�1666 �3�0697 �4184�6 �10 604�0

Present m ¼ 1; 50 n ¼ 0; 49 0�00 �3�4207 2�9495 3�2685 �2�7402 �1979�5 �8880�3
0�25 0�1679 3�5010 1�9954 �2�8700 �2555�3 �9461�9
0�50 4�6846 4�1628 0�28823 �2�9774 �3252�3 �10 016�3
0�75 10�3036 4�9687 �1�9288 �3�0613 �4095�0 �10 549�0

Present m ¼ 1; 100 n ¼ 0; 99 0�00 �3�9468 2�9639 3�4266 �2�7365 �1922�0 �8850�1
0�25 �0�1019 3�5109 2�0174 �2�8660 �2524�3 �9439�3
0�50 4�7595 4�1670 0�26632 �2�9733 �3255�0 �10 004�9
0�75 10�5577 4�9665 �2�0112 �3�0577 �4118�6 �10 546�0

Note: PSI system is used in this table

L ¼ 0�6096m, R ¼ 1�524m, h ¼ 3�048	 10�2 m, nx ¼ ny ¼ 0�33333; x0 ¼ 0�3048m, Z0 ¼ 0; t ¼ 6	 10�4 s,

e1 ¼ e2 ¼ 0:0508m. Computation point: X ¼ 1
2
; y ¼ 0: Convergence load Qcr: 5083.855 psi [7], this paper:

5083.849 psi.

TRANSIENT DYNAMIC RESPONSE 973



0 20 40 60 80 100

-2.0×10
6

0.0

2.0×10
6

4.0×10
6

6.0×10
6

8.0×10
6

T

W

 L/R=4

0.0

2.0×10
4

4.0×10
4

6.0×10
4

8.0×10
4

1.0×10
5

1.2×10
5

L/R=4 L/R=15

 L/R=15

Figure 3. W2T curves for h=R ¼ 0�01; Ey=Ex ¼ 1�0; Q=Qcr ¼ 0�50:
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3.4. STRESS AND STRAIN RESPONSES

The responses of stress and strain (non-dimensional) are shown in Figures 4 and 5.
As shown in Figure 4, axial strain ex is larger for larger Ey=Ex ratio during initial

response (T57). As for circumferential strain ey response (Figure 5), it oscillates along its
static value. While Ey=Ex ratio increases, the resistance of structure to external pressure is
enhanced. Therefore, the circumferential strain ey decreases gradually.Stress response is
shown in Figure 6.

4. CONCLUSIONS

Following Fl .uugge’s exact derivation for the buckling of cylindrical shells, the
equations of motion for transient dynamic loading of orthotropic circular cylindrical
shells subjected to external hydrostatic pressure have been formulated. The normal mode
theory is used to provide transient dynamic response for the equations of motion.
The effect of shell’s parameters and material properties on the shell response has been
studied.

Hydrostatic pressure can enlarge the response. The response of shorter shell is larger
and an increase stage exists during initial response.

Circumferential strain ey response oscillates along its static value. While Ey=Ex ratio
increases, the resistance of structure to external pressure is enhanced. Therefore, the
circumferential strain ey decreases gradually.

Isotropic cases can be studied by letting Ex ¼ Ey:
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